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The two-dimensional steady problem of the diffraction of a plane hydro- 
acoustic wave at the junction of two semi-infinite planes covering the 
surface of a fluid was treated in [d. In that paper the “general” solu- 
tion of the problem was constructed (i.e. the solution irrespective of 
the conditions at the junction of the plate). and that solution con- 

tained four arbitrary constants. 

The present paper considers a particular case of the aforementioned 
problem of great interest. An infinitesimally thin crack is assumed to 
separate the plates, and the elastic characteristics of both plates are 
taken to be identical. In the first section the solution of the problem 
will be described. The second section is devoted to the investigation 
of the solution as kh - 0 (where k is the wave number in the fluid and 

h is the thickness of the plates). 

1. Formulation and solution of the problem. An infinite 
horizontal elastic plate is divided into two identical parts by an in- 
finitesimally thin rectilinear crack. ‘lhe half-space below the plate is 
occupied by an ideal compressible fluid. A plane monochromatic acoustic 

wave originating in the depths of the fluid propagates normal to the 
crack. We seek the diffraction field caused by this wave. 

With an appropriate choice of coordinate axes (Fig. l), this problem 
is two-dimensional. It reduces to the determination of the function 

Ux, y) (the acoustic potential), which is continuous up to the x-axis, 
and which satisfies the Helmholtz equation 

AU + k2U = 0 L oo<s<+m, O<v<Sm) (1.1) 
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the boundary conditions 

and the boundary-contact conditions 

‘The principle of maximum absorption must be 

fulfilled here for the difference U - UO, where 

“cl is the incident wave 

Fig. 1. 

U, = A esl) (ixs - ivk2 - x2?/), (x -~ - x (‘OS c&i) > 0) (1.4) 

‘Ihe angle of incidence qua is measured from the positive x-axis. 

Ibe notations 

were introduced in conditions (1.3). 

Here E is Young’s modulus, u is Poisson’s ratio, h is the thickness 

of the plate, p0 is the density of the plate material, p is the density 

of the fluid and c is the velocity of sound in the fluid. 

We make use of the more general solution of this problem which was 

deduced in [II C f or constants v and 6 different for n > 0 and x ( 0, and 

unspecified boundary-contact conditions (1.3)). For the caste under con- 

sideration we obtain 

where II, is the incident wave (see (1.4))) U, is the reflected wave and 

W the diffracted disturbance. ‘Ihe radical d(k2 - A2) is considered to 

be positive on the segment ( -k, k); the choice of its branch on the re- 

maining portions of the path of integration is clear from Fig. 2, in 

which the cuts are depicted by dashed lines, while the contour of 
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integration is shown by a heavy solid line. The denominator of the inte- 

grand in (1.7) has ten roots f A,, f A,, . . ., f h, on a two-sheeted 
Riemann surface (the notation for the roots has been changed from [l.l ). 
‘Ihe roots f A,, f A, and f A, are 
located on the main sheet of the 
Riemann surface, the real roots be- 
ing f A,. We note that the integral 
(1.7) is not improper at finite 

-+ 
‘ha ’ \ 

Fig. 2. Fig. 3. 

points: the contour of integration avoids the points f A,, as shown in 
Fig. 2. 

ne constants a, b, c and d are determined from the four boundary- 
contact conditions (1.3). We represent these conditions in the follow- 

ing form: 

aw A 
2~x2 1/ ka - ma 

= - th2 ay V=. (x4 - 6) v/k’- 19 - iv 
x=*0 

SW 
A 

2ivd 1/ kY - xp 

a9 3~ l/=. = - (x4- 6) )/kL - xB- iv 

x=+0 

(14 

We will now carry out the calculations for the first of relations 
(1.8). ‘Ihe problem consists of passing to the limits y - 0, x - + 0 in 
that sequence in the expressions 

co 

SW A 
c 

aI.8 + bX’ + CL + d 
axa ay = 2ni .34-6) I/ka-- iv ’ 

x (- iJ.= l/k2 - ha) exp (ihs + i v-9) dh (1.9) 

‘Ihe first limiting process, y - 0, may be carried out immediately 
under the integral sign; [l: described how to treat the divergent inte- 

gral arising in this process. 

Considering .x to be positive, we now deform the contour of 
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integration into the loop r+ surrounding the upper branch 

Calculating the residues at the poles h,, h, and A, which 

in this process, we have 

cut (Fig. 3). 

are crossed 

PW .4 * 

\ 

ah3 + bh2 + ch + d 

dx2 ay u=. = 2ni . 
x>o 

r+(h4 - 6) v/k2 - iv (-ii2 v/k” - h2) eiA*dh - 

a ah,’ + bhs3 + chsa + dh, 
- iA 2 

a,4 - 4h,2k” - 6 
(Iv,2 - k2) 

d=o 

The integral along the whole loop r+ is reduced to the integral along 

only the right-hand side r+’ of the cut. 

Since the degree of the algebraic expression in front of the ex- 

ponential in the integrand is reduced by this means, then the second 

limiting process, x - + 0, may be carried out under the integral 

SW AV 
\ 

ah5 + bh4 + ch3 + dh2 ___ 

axaay Y=. = x (1L4 _ s)2 (hz _ k2) _ vz l//h2 - k2 dh - 
x=+0 I?;, 

(1.10) 

‘Ihe radical 

the real axis. 

\J (A2 - k2) is taken as positive on the segment (k, ~0) of 

lhe integral in (1.10) may be expressed in terms of elementary func- 

tions. For this we reduce the integral along r+’ to an integral along 

the entire contour r, consisting of the two loops r+ and r_(see Fig. 3), 

with the help of the equalities 

c h2”+l l/h” - k2dh 

s 

h2”+l l/h2 - k2 dh 

r;, (h4 - 6)* (J”2 - F) - v2 = ; r (A’_ 6)2 (h* - k2) - v2 

c 

h2n vkh”-- k2dh In h f V~‘-kka dJ, 
r;, (A4 - 6)2 (h2 - k2) - v* = e (h4 - 6)* (kz - P) - v2 k 

In the lower formula the logarithm is to be taken as positive for 

values h E (k, a). 

It is clear that the integral along r may be replaced by the sum of 

the residues of the integrand at the poles lying on the sheet of the 

Riemann surface under consideration. As a result we obtain 
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Here and everywhere in the following equations the choice of the 

logarithm is fixed by the requirements 

Two signs are given in expression (1.11). The upper sign corresponds 

to calculations carried out for x - + 0. The lower sign corresponds to 

the case x - - 0, and this result is obtained from (1.9) by replacing 

A by - h. 

Now it is clear that the first two equalities of system (1.8) may be 

simplified by termwise subtraction and addition. ‘Ihe second pair of 

equalities of this system are transformed in a similar manner. thus the 

system of equations for a, b, c and d takes the form 

21~x3 l/k” - na 

= (x4-6) Jfk” - x2- iv 

4 (bh,4+ dh,2) (h,2-k2) 

2 5&4 _ c$h,‘Lkz _ 6 = 

o 
(1.12) 

F=O 

i @V;~W;;;_Cl;J 
{In [+(1+1/1-q)] - i$}= 

s=o 
2nvx2 l/k” - x2 - 

(x4 - 6) Jfkz - x2 - iv 

‘Ihe formulas (1.4), (1.51, (1.6), (1.7) and (1.12) give the solution 

of the formulated problem. 

System (1.12) may be easily solved numerically for given values of 
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the physical parameters E, CT, p, pO, h and k. The roots of the equation 

(hsl - S)” (A; - I?) - y2 = 0 (1.13) 

required for these calculations may be tabulated. Such calculations 
were carried out under the direction of V.Iu. Zavadskii in the Institute 
of Acoustics of the Academy of Sciences, 1JSSR. 

Some equalities which are not tied to a particular choice of para- 
meters will be deduced below. 

2. Asymptotic investigation of the solution. 'Ike problem 
under consideration pertains to small wave numbers. In order to simulate 
an elastic layer by an infinitesimally thin plate, we must assume that 
kh << 1. Thus kh is a small dimensionless parameter of the problem. We 
study the behavior of the diffraction field as kh - 0. 

We introduce the dimensionless variables ‘6 = x/h, TJ = y/h, ~1 = Ah 
and transform equalities (1.7), (1.12) and (1.13), which specify the 
diffraction field, into the following form: 

aop3+ boP + COP + do 
_-03 @’ - &J&s) 1/ kW - pa - ivokW 

exp (ipE + iVkaha - P%) dP (2.1) 

22 
I (aop8’ + CoPLsl) (Ps2 - kShS) = 0 

s=. 5~~4 - 4ps2ks h2 - 6okshs 

= (k3h3cos4 'po- Sokh) sin 'po- ivo 

+ (b!p,’ + dop8’) #,a - kahs) 
LJ 3pL,4 - 4p,SkW - 6okshs = 

O 

Lx=0 

= (k3hSc0@(PO- 80 kh)sin qO-ivO 

(2.2) 

Ihe subscript 0 refers here to the new (dimensionless) physical para- 
meters corresponding to the old unsubscripted parameters. lhe partmeters 
6, and v,, are obtained from 6 and v by eliminating their dependence on 
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k and h 

6, = i1 ‘1,: 52) p&2 = 6 (2 - a) $ ) 1‘0 = 
1 

Here ct is the velocity of transverse waves in the plate material. 

Using (2.3) and (2.4), we may expand the unknowns aa, b,, c,, and d, 

in Taylor series in certain fractional powers of the parameter kh. Be- 
low we will restrict ourselves to only the first terms of such expan- 

sions. With the change of variables 

equation (2.3) reduces to the equation 

MS4 - 6, (Mz)““]” /;%I,’ - (kh)“] = vO 

the roots MS of which may be easily found by a Taylor expansion in 

powers of (kh)2/5. 

Tn subsequent calculations appear the expansions for u,, as well as 

for certain simple functions of vs. We cite for example only the repre- 

sentation most frequently encountered 

;ris (kh)‘!” + + ,+xis 3 (kh)” - 

7 (kh)“‘” + --& (kh)“l” + - . .\ 
vo 6 

‘Ihe expansion is carried out to the fourth term, since in certain 

operations cancellation of the preceding terms occurs. We note in pass- 

ing that as kh - 0, the roots of equation (2.3) are asymptotically 

situated at the vertices of a regular pentagon with center at the origin 

jJs = vo 
‘,/se-*!6 sis (,I&)“5 

The calculations lead to the following expressions for the constants: 

a0 = 5 (e% xi - 1) ??fp (kh)“‘” {I + 0 [ (kh)““}] 

b. = _ 5 (&J, xi - 1) cos’ T;;;” % (JCh)‘% iI + 0 [ (&)%]} 

co = & (,$A xi - 1) *03cos~~;~in IF” (,‘&)*“” { 1 + 0 [(k/z)““]} 
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‘Ihe basic components of the diffraction field W are cylindrical and 

surf ace waves. lhe cylindrical wave IO is determined by the method of 
stationary phase 

eikr 

wll = v (cp> I/s (.z = 7 cos q3, y = r sin q) 
(2.4) 

sin cp (kh)I”’ 

In the above spirit, only the leading term in the expansion with re- 

spect to the parameter (kh) 2/5 will be retained in the present calcul a- 

tions. It is clear from formula (2.5) that a diagram of the direction- 

ality of the cylindrical wave consists of two petals. Maximum radiation 

is observed for the angles 91 and q2 

We note that the positions of these maxima are independent of the 

direction ‘pO of the incident wave. The intensity of radiation in the 

vertical direction is very small, and the cylindrical waves do not pro- 

pagate at all in either of the horizontal directions. For the energy 

transmitted by the wave in unit time 
7 

the calculations give 

or 

lie direct and reverse surface waves W+ and w_ are calculated by 

taking the residues of the integrand at A = f A, (u = * cl,) 

i (,‘hzi _ 1) 

W+==A 3,& 
cos2 ‘pa sin ‘p. exp v;is (kl2)‘:“j (2.6) 

Z’o 
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The energy carried by each of them is 

n 
f 

= A2 (1 - co.7 21~ n) PC cos4 tp0 sin2 90 

2 hv;“l. 
(kh)‘“” (2.7) 

which is considerably greater than the energy transported by the 
cyl in&i cal wave. 

‘Ihe process of propagation of surface waves in the fluid is accom- 
panied by vibrations in the elastic layer covering the fluid. ‘Ihe energy 

TI+’ transported in the direction of increasing x per unit ‘time through 
the layer by this process may be calculated by means of the expression 

&ere v+* denotes the complex conjugate of IV+. It turns out to be equal 
to four times the amount of energy transported through the fluid in the 
same direction, i.e. 

II ‘=4rI f + (2.8) 

We denote by j the amount of energy of the incident wave II, which 
falls on a unit length in the horizontal direction 

j = A2 ‘T sin q. (2.9) 

We introduce the quantity A, equal to the ratio of the total rate of 
energy flow in diffraction from the crack to the quantity j. ‘Ibe quantity 
A, which has the units of length, will be called the effective diameter 
of the crack 

A = 10 (I - cos + n) ‘OS4 “y”,,’ ‘TO (kh)'*'bh (2.lO) 

It is clear from the formula that the diameter of the crack is small 
in comparison with the thickness of the plate. Thus the effect of 
scattering at the crack will be a weak effect and will not be accom- 
panied by any significant expenditure of energy. 
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